INFORMATION SHEET

Borosilicate Glass 3.3 – DIN 7080

Main ingredients of this glass are sodium oxide Na_2O , boron oxide B_2O_3 , silicon dioxide SiO_2 . In those ingredients, boron and silicon have high content: boron 12,5 - 13,5 %, silicon 78 - 80 %.

The feature of borosilicate glass 3.3 is that it has **low thermal expansion coefficient**, **good thermal stability**, **chemical durability** and electric property. Therefore, it's chemical resistant, heat resistant and mechanical property is excellent. So borosilicate glass is also called **heat resistance glass**.

Borosilicate glass 3.3 can be milled, drilled, grounded and toughened. Its low coefficient of thermal expansion, high thermal shock resistance and ability to work at temperatures up to 450 ° C for a long period of time, make this type of glass particularly suitable for use in stable temperature conditions. Is suitable for operation at low temperatures. This glass can withstand the temperature to about -196 °C (is suitable for use in contact with liquid nitrogen). During thawing ensure that the temperature difference does not exceed 100 K. In general is recommended for use down to -70 °C.

This glass is extremely resistant to water, alkalis, acids and organic substances.

Properties

Mechanical Performance

Density	$2.23 \pm 0.02 \text{ g/cm}^3$
Bending strength	160 N/mm ²
Surface compressive stress	100 N/mm ²
Young's modulus	64 GPa
Poisson's ratio	0,2
Hardness	5.5 Mohs, (470 Knopp, 580 Vickers)
Thermodynamic Performance	
Thermal expansion coefficient (0 – 300 °C)	3.3 ±0.1×10 ⁻⁶ K ⁻¹ (@ 0 − 300 °C)
Softening point	815 ±10 °C
Strain point	560 ±10 °C
Caloricity (20 – 100 °C)	0.83 KJ× (kgxK)⁻¹ (@ 20 – 100 °C)
Thermal coefficient	1.2 WxmxK ⁻¹
Thermal shock resistance	180K
Maximum working temperature	
Non-tempered glass	
Short time (< 10h)	-196 up to 500 °C
Long time (> 10h)	-196 up to 450 °C
Tempered glass	·

INFORMATION SHEET

ITEGLA

hitegla@hitegla.com

